Retreival Augmented Generation: A Comprehensive Survey on Bridging
Language Models and External Knowledge

Shrey Ganatra and Pushpak Bhattacharyya
Indian Institute of Technology, Bombay

Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in natural lan-
guage understanding and generation. However,
their effectiveness is constrained by the static
nature of their training data, leading to issues
such as knowledge cutoff, factual inaccuracies
(hallucinations), and a lack of domain-specific
expertise. Retrieval-Augmented Generation
(RAG) has emerged as a powerful and prevalent
paradigm to mitigate these limitations by dy-
namically integrating external knowledge into
the LLM’s generative process. This survey pro-
vides a systematic and comprehensive overview
of the RAG landscape. We begin by decon-
structing the foundational RAG pipeline into
its core components: the indexer, the retriever,
and the generator. We then propose a taxon-
omy that charts the evolution of RAG systems,
from Naive and Advanced RAG to the more
sophisticated Modular, Agentic, and Graph-
based paradigms. For each paradigm, we ana-
lyze its architecture, key innovations, and inher-
ent trade-offs. Furthermore, we delve into the
critical challenges facing the field, including
retrieval quality, generation faithfulness, and
the complexity of evaluation. Finally, we out-
line promising future research directions, such
as end-to-end optimization, adaptive retrieval
strategies, and the development of robust, au-
tomated evaluation frameworks. This survey
serves as a foundational resource for both new-
comers and experienced researchers, providing
a structured understanding of the current state
and future potential of Retrieval-Augmented
Generation.

1 Introduction

The advent of Large Language Models (LLMs)
such as OpenAl’s GPT-4 (Achiam et al., 2023),
Meta’s Llama (Touvron et al., 2023) series, and
Google’s Gemini (Team et al., 2023) has cat-
alyzed a paradigm shift in artificial intelligence.
These models, built on the Transformer (Vaswani

et al., 2017) architecture and trained on web-scale
datasets, exhibit an unprecedented ability to com-
prehend, reason, and generate human-like text.
Their impact spans a vast array of applications,
from sophisticated conversational Al to automated
content creation and scientific research. How-
ever, the power of these models is intrinsically
tied to their training methodology. LLMs encode
knowledge parametrically within their network
weights during a static, computationally intensive
pre-training phase. This design choice gives rise
to several fundamental limitations that hinder their
deployment in real-world, knowledge-intensive ap-
plications:

* Knowledge Cutoff: An LLM’s knowledge
is static and becomes outdated the moment
its training is complete. It has no awareness
of events, discoveries, or data that emerged
post-training.

* Factual Hallucination: When prompted
on topics outside their internalized knowl-
edge or when forced to make high-precision
claims, LLMs are prone to generating
"hallucinations"—plausible-sounding but fac-
tually incorrect or nonsensical statements.
This severely erodes user trust and limits their
utility in high-stakes domains.

* Lack of Domain-Specificity and Personal-
ization: LLMs are trained on public web
data and thus lack the specialized, proprietary
knowledge of a specific enterprise (e.g., in-
ternal documentation, product specs) or the
personal context of an individual user.

* Opacity and Lack of Attribution: The
knowledge generation process is a black box,
making it nearly impossible to trace a gen-
erated fact back to its source. This lack of
attribution is a major barrier to verification
and accountability.

To overcome these inherent weaknesses,
Retrieval-Augmented Generation (RAG) was
proposed (Lewis et al., 2020). RAG enhances
LLMs by providing them with dynamic, non-
parametric knowledge. Instead of relying solely
on its static internal knowledge, a RAG system
first retrieves relevant information from an external
knowledge base (e.g., a collection of documents, a
database, or the web) and then uses this retrieved
information as grounding context to generate an
informed, accurate, and attributable response. This
survey provides a comprehensive and structured
exploration of the RAG landscape, which has
evolved far beyond its initial conception. Our
primary contributions are: A detailed deconstruc-
tion of the foundational RAG pipeline, explaining
the technical nuances of its core components:
Indexing, Retrieval, and Generation. A structured
taxonomy of RAG paradigms that captures the
field’s evolution from simple pipelines to complex,
agentic systems. A thorough analysis of the
key challenges and open research questions in
retrieval optimization, generation faithfulness, and,
critically, system evaluation. A forward-looking
perspective on the future directions that are poised
to define the next generation of RAG, including
end-to-end learning and adaptive control.

2 RAG Pipeline

The canonical RAG workflow, often referred to as
"Naive RAG," consists of three primary stages.

2.1 Indexing

The indexing stage is the offline process of prepar-
ing the knowledge corpus for real-time querying.

1. Data Loading: Ingesting documents from
various sources (e.g., text files, PDFs, web-
sites, databases).

2. Chunking (or Segmentation): This is a crit-
ical step where large documents are divided
into smaller, manageable pieces. The chunk-
ing strategy directly impacts the quality of
retrieval. Key strategies include:

* Fixed-Size Chunking: Simply splitting
text by a fixed number of characters or
tokens, often with some overlap to pre-
serve context across chunks.

* Content-Aware Chunking: Splitting
based on the semantic structure of the

document, such as by paragraphs, sec-
tions, or specific markers (e.g., HTML

tags).

* Recursive Character Splitting: A com-
mon and robust method that recursively
splits text by a series of user-defined sep-
arators (e.g.,

n, ,) until chunks are of a manageable
size.

3. Embedding and Storing: Each chunk is
passed through an embedding model (e.g.,
text-embedding-ada-002, Sentence-BERT) to
create a high-dimensional vector representa-
tion. These vector embeddings, along with
the source text and metadata, are loaded into
a vector database (e.g., Pinecone, Weaviate,
Milvus, Chroma). These databases are opti-
mized for efficient vector similarity search,
typically using algorithms like HNSW (Hier-
archical Navigable Small World).

2.2 Retrieval

This is the online process that finds relevant
context for a given user query.

Query Embedding: The input query from the
user is embedded into a vector using the same
embedding model used during indexing.

Vector Similarity Search: The system executes a
Maximum Inner Product Search (MIPS) to find the
vectors in the database that are most similar to the
query vector. Common similarity metrics include
Cosine Similarity, Dot Product, and Euclidean
Distance.

Top-k Context Selection: The k chunks corre-
sponding to the most similar vectors are retrieved.
This set of k documents forms the context that will
be provided to the LLM.

2.3 Generation

This final stage leverages the LLM to produce an
answer based on the retrieved context.

Prompt Augmentation: The retrieved chunks are
formatted and inserted into a prompt template. A
typical prompt might look like:

»RAG Ecosystem

Downstream Tasks Technology Stacks

(Dialogue J(Question answeringj [Langchain J [LJamaIndexJ

»RAG Prospect

Challenges Modality Extension

[Image] [Cusmm\'zalion]

Ecosystem

L RAG in Long Context Length]

[Summarizatiorﬂ(Fact verification j (FlowiseAl][AutoGen j

,//» The RAG Paradigm

Modular RAG

e Advanced RAG

» Techniques for Better RAG

Chunk Optimization [Iterative Retrieval J (Retriever Fine-(uning]
Query Transformation [Recursive Retrieval] (Generator Flne-luning]
Context Selection [Adaptive Retrieval J[Dual Fine-tuning]

»Key Issues of RAG

What to
retrieve

When to
retrieve

[Hybrid j[Robustness J

[Scaling-laws for RAG J

[Audio j
[

Video J

[Production-ready RAG] [Code] [Spec'lalization]

»Evaluation of RAG

Evaluation Target

Retrieval Quality (Generation Quality)
Evaluation Aspects

('Negatiorr\Re]éctioh)

Context Relevance
(Information Integration)
Answer Faithfulness (Counrerfactual Robustness]

Evaluation Framework
Benchmarks (CRUD J [RGB J [HECALLJ

Tools ((TruLens) [HAGAS J [ARES J

Figure 1: Summary of RAG ecosytem by (Gao et al., 2023b)

Context:

‘Retrieved Chunk 1

‘Retrieved Chunk 2

Based on the context provided above,
please answer the following question.
Question: [User Query]

Answer:

LLM Generation: The augmented prompt is
sent to an LLM. The model is instructed to syn-
thesize the information from the provided context
to formulate a comprehensive, factually grounded
answer, ideally citing its sources from the context.

3 Taxanomy

The RAG field has evolved significantly beyond the
naive pipeline. We can categorize this evolution
into several distinct paradigms.

3.1 Naive RAG

This is the simple, foundational retrieve-then-read
pipeline described above. It is a powerful baseline

but often fails in complex scenarios due to retrieval
imprecision (the "needle in a haystack" problem) or
the generator’s inability to synthesize information
effectively, especially when the context is noisy or
lengthy (the "lost in the middle" (Liu et al., 2023)
problem).

3.2 Advanced RAG

This paradigm introduces enhancements to the
retrieval stage to improve the quality of the context
provided to the LLM.

3.2.1 Pre-Retrieval Enhancements

Query Transformation: Using an LLM to refine
the input query. This can involve breaking a com-
plex question into several sub-queries (Zheng et al.,
2023), rewriting a vague query for clarity (Peng
et al., 2024b), or generating a hypothetical docu-
ment that would answer the query (HyDE (Gao
et al., 2023a)) and using its embedding for the
search.

3.2.2 Post-Retrieval Enhancements

Re-Ranking: (Glass et al., 2022) After retrieving
an initial set of k documents (e.g., k=20), a more
powerful but slower model, like a cross-encoder,
is used to re-rank these candidates and select a

smaller, more relevant subset (e.g., top 3) to pass
to the LLM.

Context Filtering & Compression: Using an
LLM to identify and remove redundant or irrel-
evant information from the retrieved chunks, or
to summarize them, thereby reducing noise and
focusing the generator on the most critical facts.

3.3 Modular RAG

This paradigm views RAG not as a fixed pipeline
but as a flexible framework of interchangeable mod-
ules. This allows for greater adaptability and the
integration of diverse functionalities. Key modules
can be dynamically orchestrated:

Search Module: Can choose between different re-
trieval methods (e.g., vector search, sparse retrieval
with BM25, or keyword search) or use them in par-
allel.

Memory Module: Integrates conversational his-
tory to enable multi-turn, context-aware RAG.
Routing Module: Acts as a decision-making layer,
directing a query to the most appropriate down-
stream task. For example, it might route a query
to a RAG pipeline, a direct LLM call (for con-
versational queries), a web search, or a structured
data query engine (e.g., text-to-SQL). Frameworks
like Llamalndex and LangChain are instrumental
in building such modular systems.

3.4 Agentic RAG

Agentic RAG (Singh et al., 2024) represents the
current state-of-the-art, where the LLM transcends
its role as a mere generator and becomes a reason-
ing agent that can plan, use tools, and iteratively
self-correct (Gou et al., 2023). Reasoning and Plan-
ning (Chain-of-Thought): The agent decomposes a
complex problem into a sequence of logical steps.
It plans its actions before executing them.

Tool Use: Retrieval is framed as just one of many
possible "tools." An agent can decide which tool
is best for a given task, such as a VectorStoreRe-
triever, a WebSearchAPI, a Calculator, or a Codeln-
terpreter.

Iterative Self-Correction: This is the defining fea-
ture. The agent can execute a tool (e.g., retrieve
a document), observe the output, and then reflect
on whether the information is sufficient. If not,
it can generate a new plan—such as rewriting the
query, trying a different tool, or breaking the prob-
lem down further—and execute it. This introduces
loops and sophisticated error-correction capabili-
ties, as seen in frameworks like ReAct (Reason +

Act) and Self-RAG.

4 Graph-RAG

Distinct from the above, Graph RAG leverages
knowledge graphs (KGs) for retrieval (Liang et al.,
2025; Procko and Ochoa, 2024; Peng et al., 2024a).
KGs store information as nodes (entities) and edges
(relationships), providing an explicit, structured
representation of knowledge.

Knowledge Representation: Instead of unstruc-
tured text, the knowledge base is a graph. This
excels at capturing complex, multi-hop relation-
ships. Retrieval: The retrieval process involves
graph traversal algorithms to find relevant entities,
paths, or entire subgraphs. This is fundamentally
different from vector similarity search and allows
for more precise, explainable reasoning by follow-
ing explicit connections.

Generation: The retrieved subgraph is typically
"linearized"—converted into a descriptive text for-
mat—before being passed to the LLM. This pro-
vides the generator with a rich, relational con-
text that is difficult to extract from flat documents.
Graph RAG is particularly powerful for domains
with highly interconnected data, such as biomedical
research or financial analysis.

S5 Reasoning with RAG

While the foundational RAG pipeline excels at
answering factoid questions where the answer is
contained within a single retrieved chunk, its true
power is unlocked when applied to complex queries
that require reasoning. Reasoning, in this context,
refers to the ability to synthesize information from
multiple sources, perform multi-step logical infer-
ences, compare and contrast concepts, and decom-
pose a complex problem into a sequence of solvable
steps. Naive RAG, with its linear "retrieve-then-
read" architecture, fundamentally lacks an explicit
mechanism for this kind of iterative thought. The
burden of reasoning falls entirely on the final gen-
eration call to the LLM, which must perform this
complex synthesis "in its head" using a potentially
noisy and unstructured context.

This section explores the evolution of reasoning
capabilities within RAG, tracing the shift from im-
plicit synthesis to explicit, planned, and agentic
reasoning frameworks.

5.1 The Need for Multi-Hop Reasoning

The primary driver for advanced reasoning in RAG
was the challenge of Multi-Hop Question Answer-
ing (QA). These are queries where the answer can-
not be found in a single document but requires
connecting information across multiple sources.
Consider the query: "What is the hometown of
the director of the movie that won the Oscar for
Best Picture in the year Leonardo DiCaprio won
his first Oscar?"

A Naive RAG system would likely fail because no
single document contains the full answer. Answer-
ing this requires a logical chain:

Hop 1: When did Leonardo DiCaprio win his first
Oscar? (Answer: For the movie "The Revenant" at
the 2016 Oscars).

Hop 2: Which movie won Best Picture at the 2016
Oscars? (Answer: "Spotlight").

Hop 3: Who was the director of "Spotlight"? (An-
swer: Tom McCarthy).

Hop 4: What is the hometown of Tom McCarthy?
(Answer: New Providence, New Jersey).

This demonstrates that the retrieval process itself
must be iterative and guided by the intermediate
results of the reasoning chain.

5.2 Key Paradigms for Reasoning in RAG

To address this challenge, several sophisticated rea-
soning paradigms have been developed, each build-
ing upon the last in complexity and capability.

5.2.1 [Iterative Loop

The simplest extension to Naive RAG is iterative
retrieval. Instead of a single retrieval step, the
system performs a loop.

Retrieve an initial set of documents based on the
original query. The LLM analyzes the retrieved
context and generates an intermediate thought or a
refined query.

This new query is used to perform another retrieval
step. The process repeats for a fixed number of
steps or until the LLM determines it has enough
information to answer the final question.

While an improvement, simple iterative retrieval is
often inefficient. It lacks a clear plan and can easily
get sidetracked by irrelevant information retrieved
in an early step, leading to a "wild goose chase."

5.2.2 Decomposition

A more structured approach is to use an LLM to
explicitly decompose a complex query into a series

of simpler, interdependent sub-questions.

An LLM planner is first prompted to break the
main query into a sequence of sub-questions. For
the example above, it might generate:
Sub-question 1: In which year did Leonardo
DiCaprio win his first Oscar?

Sub-question 2: Which movie won Best Picture
in that year?

Sub-question 3: Who was the director of that
movie?

Sub-question 4: What is the hometown of that
director?

Sequential Execution: The system then exe-
cutes this plan step-by-step. It answers each
sub-question in order, using the answer from the
previous step to inform the retrieval for the next.
Each step involves a targeted RAG call (retrieve
and synthesize an answer for the sub-question).
Final Synthesis: Once all sub-questions are
answered, a final LLM call synthesizes the inter-
mediate answers into a single, coherent response.
This method is more robust than simple iteration
because it follows a structured plan. Frameworks
like Llamalndex provide tools to easily implement
such multi-step query engines.

5.2.3 Agentic Reasoning

The most advanced and powerful form of reasoning
is found in Agentic RAG. Here, the LLM is not just
a planner (Huang et al., 2024) or a generator but an
autonomous agent that can reason, create complex
plans, use tools, and dynamically adapt its strategy
based on observations.

The canonical agentic framework is ReAct (Reason
+ Act), which structures the LLM’s process into a
Thought -> Action -> Observation loop.

Thought: The agent reasons about the overall goal
and decides on the immediate next step. It ver-
balizes its reasoning, creating a clear trace of its
strategy.

Action: The agent decides to execute a specific
"tool." This could be Search[query] to retrieve from
a vector database, Lookup[entity] for a specific
lookup, or even Finish[answer] when it believes it
has a final answer. Observation: The agent receives
the output from the tool it executed. This could be
a set of retrieved documents or a specific value.
The agent then repeats this loop, using the new
observation to inform its next thought and action,
until it decides to use the Finish action. This allows
for dynamic, real-time planning and error correc-

tion. If a search action yields no results, the agent
can observe this failure, think about why it failed
(e.g., "my query was too specific"), and formulate a
new action (e.g., Search[rewritten, broader query]).

Self-RAG (Asai et al., 2023) extends this by
adding more granular, self-reflective capabilities.
It trains an LLM to generate special "reflection
tokens" that control the retrieval and generation
process. When generating text, the model can de-
cide whether retrieval is needed. If it retrieves, it
can then generate critique tokens to assess the rele-
vance of each document ([Relevant], [Irrelevant])
and whether the retrieved documents support the
claim being made ([Supported], [Contradictory],
[Partial]). This allows the agent to actively filter
noise and reason about the quality of its own re-
trieved context.

5.2.4 Reasoning with Knowledge Graphs

Reasoning with knowledge graphs represents
a fundamentally different approach. Instead of
finding statistical correlations in text, it leverages
explicit, structured relationships. Structured
Inference: Reasoning on a KG is a process of
graph traversal. To answer the query "Which drug
that treats diabetes is manufactured by a company
based in Germany?", the system can perform a
structured query that traverses the graph:

Find(Drug) WHERE (Drug) -> [treats_with]->
(Diabetes)

AND (Drug) -> [manufactured_by] -> (Company)
AND (Company) -> [based_in]-> (Germany).

Advantages:

Precision: Reasoning follows explicit, human-
curated relationships, leading to highly precise and
reliable answers.

Explainability: The reasoning path through the
graph serves as a fully transparent and auditable ex-
planation of how the answer was derived. Reduced
Ambiguity: By linking entities to unique identifiers
in the graph, it resolves the ambiguity inherent in
natural language. The primary challenge in Graph
RAG is converting a natural language query into
a formal graph query (e.g., SPARQL or Cypher),
a task known as text-to-graph. However, when
successful, it provides a level of logical rigor that
is difficult to achieve with text-based RAG.

5.3 Challenges and Future Directions in RAG
Reasoning

Despite these advancements, significant challenges
remain:

Error Propagation: In multi-hop chains,
an error in an early step (e.g., a failed retrieval or
an incorrect intermediate answer) will inevitably
corrupt the entire subsequent reasoning process.
Latency and Cost: Agentic reasoning, with
its multiple LLM calls for thoughts, plans, and
syntheses, can be significantly slower and more
expensive than Naive RAG, posing a major barrier
to production deployment.

Planning Rigidity vs. Flexibility: While
decomposition provides structure, it can be too
rigid. Agentic frameworks offer flexibility but
risk inefficient planning, getting stuck in loops,
or hallucinating invalid tool calls. A key research
area is finding the right balance between structured
planning and dynamic adaptation

Optimal Tool Selection: As the number of
available retrieval tools and data sources grows,
the agent faces a new retrieval problem: which tool
is the best one for the current task? This requires
sophisticated routing and tool-use capabilities.

The future of reasoning in RAG lies in creating
more efficient and robust agents. This includes
developing techniques for parallelizing actions, us-
ing smaller, specialized LLMs for planning and
tool selection to reduce latency, and training agents
with self-correction mechanisms that are more re-
silient to early-stage errors. Ultimately, the goal
is to create systems that can seamlessly transition
between simple retrieval and complex, agentic rea-
soning based on the demands of the query, all while
remaining fast, cost-effective, and trustworthy.

6 Key Challenges and Open Research
Areas

6.1 Retrieval Challenges

6.1.1 Optimal Chunking

Finding the right chunking strategy remains a "dark
art." The optimal size and method depend heavily
on the data and task, and there is no one-size-fits-all
solution.

6.1.2 Embedding Model Limitations

General-purpose embedding models may not cap-
ture the nuances of specialized domains. Fine-

tuning these models is often necessary but can be
data-intensive.

6.1.3 Precision-Recall Trade-off

Retrieving more documents (increasing k) im-
proves the chance of finding the correct information
(higher recall) but also introduces more noise, mak-
ing it harder for the LLM to find the "needle in the
haystack" (lower precision).

6.2 Generation Challenges
6.2.1 Faithfulness vs. Fluency

Enforcing strict faithfulness to the provided context
can lead to stilted, extractive answers. Allowing for
more abstraction and synthesis increases fluency
but risks introducing hallucinations.

6.2.2 Handling Noise and Contradiction

When retrieved documents contain conflicting in-
formation, it is an open question how the LLM
should reconcile these contradictions.

6.2.3 Attribution

Reliably citing sources is difficult, especially when
the final answer is a synthesis of information from
multiple different chunks.

6.3 Evaluation

Evaluating RAG systems is the most significant
bottleneck in the field.

6.3.1 Inadequacy of Traditional Metrics

Simple metrics for retrieval (Hit Rate, MRR) do
not always correlate with the quality of the final
answer. Metrics for generation (BLEU, ROUGE)
fail to capture factual correctness.

6.3.2 Emergence of RAG-Specific
Frameworks

A new generation of evaluation frameworks like
RAGAS (Es et al., 2024), ARES (Saad-Falcon
et al., 2023), and TruLens has emerged. They
focus on a more holistic set of metrics, often using
an LLM as the evaluator:

Faithfulness: Is the generated answer factu-
ally consistent with the retrieved context?
Answer Relevance: Does the answer directly
address the user’s question?

Context Precision: Are the retrieved chunks
relevant to the question? (Signal-to-noise ratio).
Context Recall: Were all necessary documents to

answer the question retrieved?

Need for Better Benchmarks: The field needs
robust, standardized benchmarks that test RAG sys-
tems on diverse, realistic, and challenging queries,
especially those requiring multi-hop reasoning and
the rejection of "unanswerable" questions.

7 Future Directions

7.1 End-to-End Optimization

The holy grail is to move beyond separately trained
components and jointly optimize the entire RAG
pipeline. This would allow the retriever to be fine-
tuned to retrieve documents that are specifically
most useful for the generator it is paired with.

7.2 Adaptive and Agentic Control

Systems will become more intelligent about re-
source allocation. They will learn if retrieval is
needed at all, what to retrieve (e.g., which data
source or tool to use), and how to retrieve (e.g.,
single-step vs. multi-step).

7.3 Multimodality

RAG will expand beyond text to retrieve and syn-
thesize information from images, tables, audio, and
video, enabling a richer and more comprehensive
understanding of the world.

7.4 Scalability and Productionization

A major focus will be on making complex agen-
tic workflows efficient and low-latency enough for
real-world production systems. This involves tech-
niques like prompt caching, parallelizing tool calls,
and using smaller, specialized LLMs for intermedi-
ate reasoning steps.

8 Conslusion

Retrieval-Augmented Generation has evolved from
a simple technique to a cornerstone of modern Al,
providing a practical and powerful solution to the
inherent limitations of static LLMs. By ground-
ing generation in external, verifiable knowledge,
RAG is the key to building factual, trustworthy, and
context-aware Al systems. This survey has charted
its evolution through a structured taxonomy, from
the Naive pipeline to sophisticated Agentic and
Graph-based systems. While significant challenges
in retrieval, generation, and especially evaluation
persist, the field is a hotbed of innovation. The
future of RAG lies in the development of fully

adaptive, end-to-end optimized, and multimodal
systems that can reason and act as true collabora-
tors in our quest for knowledge.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations.

Shahul Es, Jithin James, Luis Espinosa Anke, and
Steven Schockaert. 2024. Ragas: Automated evalua-
tion of retrieval augmented generation. In Proceed-
ings of the 18th Conference of the European Chap-
ter of the Association for Computational Linguistics:
System Demonstrations, pages 150-158.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2023a. Precise zero-shot dense retrieval without rel-
evance labels. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1762—1777.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang
Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. 2023b. Retrieval-
augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1).

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub
Chowdhury, Ankita Naik, Pengshan Cai, and Alfio
Gliozzo. 2022. Re2G: Retrieve, rerank, generate.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2701-2715, Seattle, United States. Association
for Computational Linguistics.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understanding
the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in neu-
ral information processing systems, 33:9459-9474.

Lei Liang, Zhongpu Bo, Zhengke Gui, Zhongshu Zhu,
Ling Zhong, Peilong Zhao, Mengshu Sun, Zhigiang
Zhang, Jun Zhou, Wenguang Chen, et al. 2025. Kag:
Boosting 1lms in professional domains via knowledge

augmented generation. In Companion Proceedings
of the ACM on Web Conference 2025, pages 334-343.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. 2024a. Graph retrieval-augmented generation:
A survey. arXiv preprint arXiv:2408.08921.

Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan
Ou, Xiaoyi Zeng, Derong Xu, Tong Xu, and Enhong
Chen. 2024b. Large language model based long-
tail query rewriting in taobao search. In Companion
Proceedings of the ACM Web Conference 2024, pages
20-28.

Tyler Thomas Procko and Omar Ochoa. 2024. Graph
retrieval-augmented generation for large language
models: A survey. In 2024 Conference on Al, Sci-
ence, Engineering, and Technology (AIXSET), pages
166-169. IEEE.

Jon Saad-Falcon, Omar Khattab, Christopher Potts, and
Matei Zaharia. 2023. Ares: An automated evalua-
tion framework for retrieval-augmented generation
systems. arXiv preprint arXiv:2311.09476.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Ta-
laei Khoei. 2024. Enhancing ai systems with agentic
workflows patterns in large language model. In 2024
IEEE World Al IoT Congress (AlloT), pages 527-532.
IEEE.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H Chi, Quoc V Le, and Denny
Zhou. 2023. Take a step back: Evoking reasoning via
abstraction in large language models. arXiv preprint
arXiv:2310.06117.

https://doi.org/10.18653/v1/2022.naacl-main.194

	Introduction
	RAG Pipeline
	Indexing
	Retrieval
	Generation

	Taxanomy
	Naïve RAG
	Advanced RAG
	Pre-Retrieval Enhancements
	Post-Retrieval Enhancements

	Modular RAG
	Agentic RAG

	Graph-RAG
	Reasoning with RAG
	The Need for Multi-Hop Reasoning
	Key Paradigms for Reasoning in RAG
	Iterative Loop
	Decomposition
	Agentic Reasoning
	Reasoning with Knowledge Graphs

	Challenges and Future Directions in RAG Reasoning

	Key Challenges and Open Research Areas
	Retrieval Challenges
	Optimal Chunking
	Embedding Model Limitations
	Precision-Recall Trade-off

	Generation Challenges
	Faithfulness vs. Fluency
	Handling Noise and Contradiction
	Attribution

	Evaluation
	Inadequacy of Traditional Metrics
	Emergence of RAG-Specific Frameworks

	Future Directions
	End-to-End Optimization
	Adaptive and Agentic Control
	Multimodality
	Scalability and Productionization

	Conslusion

